볼트 규격에서 분모로 8, 16, 32 같은 숫자를 사용하는 이유

 볼트 규격에서 분모로 8, 16, 32 같은 숫자를 사용하는 이유는 인치 단위를 작은 단위로 분할할 때 쉽게 계산할 수 있도록 만든 관습에 기인합니다. 다음과 같은 이유가 있습니다: 이진수 분할: 1인치를 2, 4, 8, 16, 32 등으로 나누면 각 분할은 정확한 반으로 나눠지므로 측정과 계산이 편리해집니다. 예를 들어 1/2, 1/4, 1/8, 1/16, 1/32처럼 한 단계씩 나누기 쉬워지죠. 산업 표준화: 미국과 영국에서 인치 단위를 기반으로 볼트와 나사의 크기를 표준화했기 때문에, 1인치를 쉽게 나눌 수 있는 분수 단위(2의 배수)를 사용하게 되었습니다. 특히 미국에서 분수 단위를 채택하면서 관습이 되었고, 볼트 및 나사의 규격에 정착하게 되었습니다. 제작 및 정밀도 용이성: 제조 시에도 1/8, 1/16 등의 단위는 다양한 크기의 볼트 및 나사를 만들 때 용이합니다.

lateral stability of precast, prestressed concrete bridge references

REFERENCES
ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (318R￾02),” American Institute, Farmington Hills, Michigan, 2002, 443 pp.
Anderson, A. R. "Lateral stability of long prestressed concrete beams". PCI Journal, 16(3), 7-9. May-June 1971.
Bairán, J. M. and Cladera, A. (2014). “Collapse of a precast concrete beam for a light roof. Importance of elastomeric
bearing pads in the element’s stability.” Eng. Failure Analysis, 39, 188-199.
Billing, K. (1953). Prestressed Concrete. D Van Nostrand Company, Inc., New York.
Burgoyne, C. J., Stratford, T.J. (2001). "Lateral instability of long-span prestressed concrete beams on flexible
bearings". The Structural Engineer, Volume 79/No 6, March 2001.
Castrodale, R. W. and White, C. D. "Extending Span Ranges of Precast Prestressed Concrete Girders". National
Cooperative Highway Research Program, Report 517. Washington D. C., 2004.
Chamorro, E., Aristiazabal, J.D. (2016). “Analysis of a horizontally curved long-span beam on two nonlinear elastic
supports.” J. Bridge Eng. 21(5): 1-14.
de la Fuente, A., Aguado, A., Molins, C., and Armengou, J. (2012). “Numerical model for the analysis up to failure
of precast concrete sections.” Comput. Struct.,106-107, 105-14.
EHE-08. Comisión Permanente del Hormigón. Instrucción de Hormigón Estructural. Ministerio de Fomento. 3th
Edition, 2009.
EN 15050:2008 +A1:2012. Precast concrete products – Bridge elements.
fib Bulletins 65-66, Model Code 2010. Final Draft, 2010. fédération internationale du béton (fib), Lausanne,
Switzerland.
European Committee of Standarization. Design of concrete structures – Part 1-1: General rules and rules for
buildings. Eurocode 2, Brussels, 2004.
Hurff, J. "Stability of Precast Prestressed Concrete Bridge Girders Considering Imperfections and Thermal Effects".
Georgia Institute of Technology, School of Civil and Environmental Engineering, August 2010.
Kalkan, I. (2014). “Lateral torsional buckling of rectangular reinforced concrete beams.” ACI Struct. J. 111, pp.:
71-82.
Lee, J.H. (2012). “Behaviour of precast prestressed concrete bridge girders involving thermal effects and initial
imperfections during construction.” Eng. Struct. 42: 1-8.
Laszlo, G. and Imper, R. R. "Handling and Shipping of Long Span Bridge Beams". PCI Journal, November￾December 1987, pp. 86-101.
Leonhardt, F. (1955). Spannbeton für die Praxis. Verlag Von Wilhelm Ernst&Sohn, London.
Magnel, G. (1950). Prestressed Concrete. Concrete Publications Limited, London.
Mast, R. F. (1989). “Lateral Stability of Long Prestressed Concrete Beams, Part 1.” PCI J. 34(1), 34–53.
Mast, R. F. (1993). “Lateral Stability of Long Prestressed Concrete Beams, Part 2.” PCI J., 38(1), 70–88.
Mast, R. F. (1994). “Lateral bending test to destruction of a 149 ft. prestressed concrete I-beam.” PCI J., 39(1),
54-62.
Muller, J. "Lateral Stability of Precast Members During Handling and Placing". PCI Journal, February 1962, pp.
20-31.
Peart, W.L., Rhomberg, E.J., James, R.W. (1992). Blucking of suspended camber girders. ASCE J Struct. Eng.
118(2): 505-528.
PCI. Tolerance Manual for Precast and Prestressed Concrete Construction. Precast Concrete Institute, Chicago,
IL. 1st ed., 2000.
PCI. Recommended practice for lateral stability of precast, prestressed concrete bridge girders (CB-02-16). PCI
committee on Bridges. 2016. 

댓글

이 블로그의 인기 게시물

Temperature effects_maturity