볼트 규격에서 분모로 8, 16, 32 같은 숫자를 사용하는 이유

 볼트 규격에서 분모로 8, 16, 32 같은 숫자를 사용하는 이유는 인치 단위를 작은 단위로 분할할 때 쉽게 계산할 수 있도록 만든 관습에 기인합니다. 다음과 같은 이유가 있습니다: 이진수 분할: 1인치를 2, 4, 8, 16, 32 등으로 나누면 각 분할은 정확한 반으로 나눠지므로 측정과 계산이 편리해집니다. 예를 들어 1/2, 1/4, 1/8, 1/16, 1/32처럼 한 단계씩 나누기 쉬워지죠. 산업 표준화: 미국과 영국에서 인치 단위를 기반으로 볼트와 나사의 크기를 표준화했기 때문에, 1인치를 쉽게 나눌 수 있는 분수 단위(2의 배수)를 사용하게 되었습니다. 특히 미국에서 분수 단위를 채택하면서 관습이 되었고, 볼트 및 나사의 규격에 정착하게 되었습니다. 제작 및 정밀도 용이성: 제조 시에도 1/8, 1/16 등의 단위는 다양한 크기의 볼트 및 나사를 만들 때 용이합니다.

Temperature effects_maturity

 In the CEB-FIP Model Code 90, maturity is a concept used to predict the rate at which concrete gains strength based on temperature and time. Eq. (2.1-87) is used to calculate the maturity-adjusted time $$t_T$, which accounts for the effects of temperature on concrete's strength development.

\( S=\int d^{4} x\left(\frac{R}{2 \kappa}\right) \)

begin{eqation}S=\int d^{4} x\left(\frac{R}{2 \kappa}\right)end{equation}

Definition of Equation (2.1-87):

The maturity-adjusted time $$tTt_T is calculated as:

$$tT=∫t0texp⁡[QR(1T0−1T(τ))]dτt_T = \int_{t_0}^{t} \exp \left[ \frac{Q}{R} \left( \frac{1}{T_0} - \frac{1}{T(\tau)} \right) \right] d\tau

Where:

  • tTt_T = maturity-adjusted time (in days)
  • tt = real elapsed time (in days)
  • t0t_0 = start time for the calculation (usually 0)
  • QQ = activation energy for hydration process, typically around 33,500 J/mol for ordinary Portland cement
  • RR = universal gas constant, approximately 8.314 J/mol·K
  • T0T_0 = reference temperature (293.15 K, which is 20°C)
  • T(τ)T(\tau) = concrete temperature at time τ\tau in Kelvin (K)
  • τ\tau = time variable used for integration

Example Calculation:

Let’s assume the concrete is cured at a constant temperature of 30°C (303.15 K), and the elapsed time is 7 days.

Step 1: Convert the temperature to Kelvin

  • The reference temperature T0T_0 is 20°C (or 293.15 K).
  • The concrete temperature T(τ)T(\tau) is 30°C (or 303.15 K).

Step 2: Calculate the exponent

QR(1T0−1T(τ))=335008.314(1293.15−1303.15)\frac{Q}{R} \left( \frac{1}{T_0} - \frac{1}{T(\tau)} \right) = \frac{33500}{8.314} \left( \frac{1}{293.15} - \frac{1}{303.15} \right)

  1. First, calculate the inverse of the temperatures:

1293.15=0.00341 K−1,1303.15=0.00330 K−1\frac{1}{293.15} = 0.00341 \, \text{K}^{-1}, \quad \frac{1}{303.15} = 0.00330 \, \text{K}^{-1} 0.00341−0.00330=0.00011 K−10.00341 - 0.00330 = 0.00011 \, \text{K}^{-1}

  1. Now, multiply by QR\frac{Q}{R}:

335008.314×0.00011=0.4432\frac{33500}{8.314} \times 0.00011 = 0.4432

Step 3: Integrate over time

Since the temperature is constant, the integral simplifies to:

tT=∫07exp⁡(0.4432) dτ=7×exp⁡(0.4432)t_T = \int_{0}^{7} \exp(0.4432) \, d\tau = 7 \times \exp(0.4432) exp⁡(0.4432)=1.5578\exp(0.4432) = 1.5578

So, the equivalent age tTt_T is:

tT=7×1.5578=10.9046 dayst_T = 7 \times 1.5578 = 10.9046 \, \text{days}

Conclusion:

For concrete cured at 30°C over 7 real days, the equivalent maturity-adjusted age tTt_T is approximately 10.9 days. This means that the concrete cured at 30°C gains strength equivalent to about 10.9 days of curing at 20°C.

This method helps account for the influence of temperature on the rate of strength development in concrete.

댓글

이 블로그의 인기 게시물