Matrix menu
- 공유 링크 만들기
- X
- 이메일
- 기타 앱
Matrix menu
Matrix menu |
Generate Matrix...
Generate Matrix from Expression...
Enter Matrix..
Nested list to Matrix
Matrix from csv file
Matrix to csv file
Invert Matrix:
Characteristic Polynomial...
Determinant
Eigenvalues
Eigenvectors
Adjoint Matrix
Rank
Transpose Matrix
Extract Row
Extract Column
Remove Rows or Columns
Convert Row to list
Convert Column to list
Multiply matrices
Matrix exponent
Hadamard (element-by-element) product
Hadamard exponent
Make List.
Apply to List..
Map to List(s)..
Map to Matrix...
- 공유 링크 만들기
- X
- 이메일
- 기타 앱
이 블로그의 인기 게시물
insert subscripts and superscripts inside a text region
시멘트 콘크리트 설계기준 배합비
Temperature effects_maturity
In the CEB-FIP Model Code 90 , maturity is a concept used to predict the rate at which concrete gains strength based on temperature and time. Eq. (2.1-87) is used to calculate the maturity-adjusted time t_T$ $ , which accounts for the effects of temperature on concrete's strength development. \( S=\int d^{4} x\left(\frac{R}{2 \kappa}\right) \) begin{eqation} S=\int d^{4} x\left(\frac{R}{2 \kappa}\right) end{equation} Definition of Equation (2.1-87): The maturity-adjusted time tTt_T tT is calculated as: tT=∫t0texp[QR(1T0−1T(τ))]dτt_T = \int_{t_0}^{t} \exp \left[ \frac{Q}{R} \left( \frac{1}{T_0} - \frac{1}{T(\tau)} \right) \right] d\tau tT=∫t0texp[RQ(T01−T(τ)1)]dτ$$ Where: tTt_T tT = maturity-adjusted time (in days) tt t = real elapsed time (in days) t0t_0 t0 = start time for the calculation (usually 0) QQ Q = activation energy for hydration process, typically around 33,500 J/mo...
댓글
댓글 쓰기