Canvas Widgets https://labellota02.tistory.com/entry/Canvas-Widgets
manipulating equations and in symbolic calculations
- 공유 링크 만들기
- X
- 이메일
- 기타 앱
Maxima's strengths are manipulating equations and in symbolic calculations. It therefore makes sense to use functions (as opposed to equations with labels) sparingly and to keep the actual values of variables in a list, instead of directly assigning them values. An example session that does do so would be:
Maxima의 강점은 방정식 조작과 기호 계산에 있습니다. 따라서 (레이블이 있는 방정식과 달리) 함수를 아껴서 사용하고 변수에 직접 값을 할당하는 대신 변수의 실제 값을 목록에 보관하는 것이 좋습니다. 이렇게 하는 세션의 예는 다음과 같습니다:
/* We keep the actual values in a list so we can use them later on */
Values:[a=10,c=100];
Pyth:a^2+b^2=c^2;
solve(%,b);
result:%[2];
at(result,Values);
float(%);
Tip of the day
- 공유 링크 만들기
- X
- 이메일
- 기타 앱
이 블로그의 인기 게시물
insert subscripts and superscripts inside a text region
시멘트 콘크리트 설계기준 배합비
Temperature effects_maturity
In the CEB-FIP Model Code 90 , maturity is a concept used to predict the rate at which concrete gains strength based on temperature and time. Eq. (2.1-87) is used to calculate the maturity-adjusted time $$ t_T$ $ , which accounts for the effects of temperature on concrete's strength development. \( S=\int d^{4} x\left(\frac{R}{2 \kappa}\right) \) begin{eqation} S=\int d^{4} x\left(\frac{R}{2 \kappa}\right) end{equation} Definition of Equation (2.1-87): The maturity-adjusted time $$tTt_T tT$$ is calculated as: $$tT=∫t0texp[QR(1T0−1T(τ))]dτt_T = \int_{t_0}^{t} \exp \left[ \frac{Q}{R} \left( \frac{1}{T_0} - \frac{1}{T(\tau)} \right) \right] d\tau tT=∫t0texp[RQ(T01−T(τ)1)]dτ$$ Where: tTt_T tT = maturity-adjusted time (in days) tt t = real elapsed time (in days) t0t_0 t0 = start time for the calculation (usually 0) QQ Q = activation energy for hydration process, typically around 33,500 J/mo...
댓글
댓글 쓰기