Load Factor for Passive lateral earth pressure
- 공유 링크 만들기
- X
- 이메일
- 기타 앱
Load Factor for Passive lateral earth pressure
AASHTO LRFD Bridge Design Specifications 9th Edition 2020.
p3-19
C3.4.1
A load factor for passive lateral earth pressure is not given in Table 3.4.1-2 because, strictly speaking, passive lateral earth pressure is a resistance and not a load.
For discussion of the selection of a passive lateral earth pressure resistance factor see Article 10.5.5.2.2.
Table 10.5.5.2.2-1—Resistance Factors for Geotechnical Resistance of Shallow Foundations at the Strength Limit State |
도로교설계기준(한계상태설계법)해설 2015
p3-12
[해설]
엄밀하게 수동토압은 하중이 아니라, 저항이기 때문에 수동횡토압에 대한 하중계수는 표 3.4.2에 주어져 있지 않다. 수동횡토압의 저항계수에 대해서는 7.5.5를 참고한다.
도로교설계기준(한계상태설계법) 2016
7.5.5 저항계수
활동에 저항하는 수동토압 저항계수 0.5
- 공유 링크 만들기
- X
- 이메일
- 기타 앱
이 블로그의 인기 게시물
insert subscripts and superscripts inside a text region
시멘트 콘크리트 설계기준 배합비
Temperature effects_maturity
In the CEB-FIP Model Code 90 , maturity is a concept used to predict the rate at which concrete gains strength based on temperature and time. Eq. (2.1-87) is used to calculate the maturity-adjusted time t_T$ $ , which accounts for the effects of temperature on concrete's strength development. \( S=\int d^{4} x\left(\frac{R}{2 \kappa}\right) \) begin{eqation} S=\int d^{4} x\left(\frac{R}{2 \kappa}\right) end{equation} Definition of Equation (2.1-87): The maturity-adjusted time tTt_T tT is calculated as: tT=∫t0texp[QR(1T0−1T(τ))]dτt_T = \int_{t_0}^{t} \exp \left[ \frac{Q}{R} \left( \frac{1}{T_0} - \frac{1}{T(\tau)} \right) \right] d\tau tT=∫t0texp[RQ(T01−T(τ)1)]dτ$$ Where: tTt_T tT = maturity-adjusted time (in days) tt t = real elapsed time (in days) t0t_0 t0 = start time for the calculation (usually 0) QQ Q = activation energy for hydration process, typically around 33,500 J/mo...
댓글
댓글 쓰기