Indefinite interal in Maxima
- 공유 링크 만들기
- X
- 이메일
- 기타 앱
Indefinite interal in Maxima
to show the integral unevaluated use an apostrophe before the integrate command.
follow it immediately with ev(%,nouns) to show the result.
Indefinite interal in Maxima |
부정 적분을 수행하려면 integrate 명령 앞에 apostrope(')를 사용한다.
#Indefinite interal
그 뒤에 ev(%,nouns)를 입력하면 그 결과를 보여준다.
Indefinite interal in SMath Studio |
#Indefinite interal
#부정적분
- 공유 링크 만들기
- X
- 이메일
- 기타 앱
이 블로그의 인기 게시물
insert subscripts and superscripts inside a text region
시멘트 콘크리트 설계기준 배합비
Temperature effects_maturity
In the CEB-FIP Model Code 90 , maturity is a concept used to predict the rate at which concrete gains strength based on temperature and time. Eq. (2.1-87) is used to calculate the maturity-adjusted time t_T$ $ , which accounts for the effects of temperature on concrete's strength development. \( S=\int d^{4} x\left(\frac{R}{2 \kappa}\right) \) begin{eqation} S=\int d^{4} x\left(\frac{R}{2 \kappa}\right) end{equation} Definition of Equation (2.1-87): The maturity-adjusted time tTt_T tT is calculated as: tT=∫t0texp[QR(1T0−1T(τ))]dτt_T = \int_{t_0}^{t} \exp \left[ \frac{Q}{R} \left( \frac{1}{T_0} - \frac{1}{T(\tau)} \right) \right] d\tau tT=∫t0texp[RQ(T01−T(τ)1)]dτ$$ Where: tTt_T tT = maturity-adjusted time (in days) tt t = real elapsed time (in days) t0t_0 t0 = start time for the calculation (usually 0) QQ Q = activation energy for hydration process, typically around 33,500 J/mo...
댓글
댓글 쓰기